Quantifying the effects of climate and surface change on glacier mass balance

Author:

Elsberg D. H.,Harrison W. D.,Echelmeyer K. A.,Krimmel R. M.

Abstract

AbstractWhen a mass balance is computed using an outdated map, that computation does not reveal the actual mass change. But older maps often must be used for practical reasons. We present a method by which, with a few additional measurements each year, a mass balance computed with an outdated map can be transformed into an actual mass change. This is done by taking into account the influence of changes in areal extent and changes in the surface elevation of the glacier since the map was made. This method is applied to South Cascade Glacier, Washington, U.S.A., as an example. The computed cumulative mass balance from 1970 to 1997 would have been 16% too negative if the 1970 map had not been updated. While the actual volume change of a glacier is relevant to hydrological studies, the change that would have occurred on a constant (or static) surface is more relevant to certain glacier dynamics problems and most climate problems. We term this the reference-surface balance and propose that such a balance, which deliberately omits the influence of changes in area and surface elevation, is better correlated to climatic variations than the conventional one, which incorporates those influences.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3