Measurement of vertical strain and velocity at Siple Dome, Antarctica, with optical sensors

Author:

Zumberge Mark A.,Elsberg Daniel H.,Harrison William D.,Husmann Eric,Morack John L.,Pettit Erin C.,Waddington Edwin D.

Abstract

AbstractAs part of a larger program to measure and model vertical strain around Siple Dome on the West Antarctic ice sheet, we developed a new sensor to accurately and stably record displacements. The sensors consist of optical fibers, encased in thin-wall stainless-steel tubes, frozen into holes drilled with hot water, and stretched from the surface to various depths (up to 985 m) in the ice sheet. An optical system, connected annually to the fibers, reads out their absolute lengths with a precision of about 2 mm. Two sets of five sensors were installed in the 1997/98 field season: one set is near the Siple Dome core hole (an ice divide), and a second set is on the flank 7 km to the north (the ice thickness at both sites is approximately 1000 m). The optical-fiber length observations taken in four field seasons spanning a 3 year interval reveal vertical strain rates ranging from −229 ± 4 ppm a−1 to −7 ± 9 ppm a−1. In addition to confirming a non-linear constitutive relationship for deep ice, our analysis of the strain rates indicates the ice sheet is thinning at the flank and is in steady state at the divide.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3