Coupled ice–till deformation near subglacial channels and cavities

Author:

Ng Felix S. L.

Abstract

AbstractPrevious models of ice–till deformation near subglacial channels or cavities neglect the fact that the motions of the two materials are coupled, and thus the interface between ice and till may not remain stationary. Here, we analyze in succession two models which address the effect of such coupling via specification of appropriate continuity conditions for stress and velocity across the interface. The modelled scenario is that of a shallow channel–cavity, with its long axis parallel to the principal ice-flow direction, overlying actively deforming till sediments. By applying asymptotic techniques, we investigate how the pattern and velocity of the creep flow depend generally on the ratio between the ice and till viscosities, and on the deforming-till thickness. A more sophisticated, non-linear rheology for till sediments is then introduced. It reveals that the two-way interaction between water percolation and deformation in the till will enhance the localization of sediment flow near the channel margins. The length scale over which transition of effective stress in the till takes place — from its relatively high, far-field value to the low, channel value — is found to depend critically on a dimensionless permeability parameter (Λ). In any case, coupled deformation causes sediment (and ice) flow towards the channel, subsidence of the ice–till interface just outside the channel, and extension of the area over which the ice is in contact with till. Apart from having direct implications for subglacial sediment transport, these results indicate that coupled deformation can contribute significantly to the spatial evolution of stress distribution under a glacier, and thus its incorporation into future sliding and drainage theories for a soft bed should be considered essential.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3