Spatial and temporal evolution of rapid basal sliding on Bench Glacier, Alaska, USA

Author:

Macgregor Kelly R.,Riihimaki Catherine A.,Anderson Robert S.

Abstract

AbstractWe measured the surface velocity field during the summers of 1999 and 2000 on the 7 km long, 185 m thick Bench Glacier, Alaska, USA. In the spring of both years, a short-lived pulse of surface velocity, 2-4 times the annual mean velocity, propagated up-glacier from the terminus at a rate of ~200-250md-1. Displacement attributable to rapid sliding is ~5-10% of the annual surface motion, while the high-velocity event comprised 60-95% of annual basal motion. Sliding during the propagating speed-up event peaked at 6-14 cm d-1, with the highest rates in mid-glacier. Continuous horizontal and vertical GPS measurements at one stake showed divergence and then convergence of the ice surface with the bed as the velocity wave passed, with maximum surface uplift of 8-16 cm. High divergence rates coincided with high horizontal velocities, suggesting rapid sliding on the up-glacier side of bedrock steps. Initiation of the annual speed-up event occurred during the peak in englacial water storage, while the glacier was entirely snow-covered. Basal motion during the propagating speed-up event enlarges cavities and connections among them, driving a transition from a poorly connected hydrologic system to a well-connected linked-cavity system. Sliding is probably halted by the development of a conduit system.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3