Basal Stress Concentrations Due to Abrupt Changes in Boundary Conditions: A Cause for High Till Concentration at the Bottom of a Glacier

Author:

Hutter Kolumban,Olunloyo Vincent O.S.

Abstract

The existence of cold patches at the base of a glacier suggests that the sliding law will depend on these patches, which will essentially affect the viscosity constant. In a poly thermal glacier, such as a glacier which is cold in its lower part and temperate in its upper part, basal boundary conditions change from no-slip to viscous sliding. It is anticipated that the viscosity constant of this sliding law will depend on the distance from the transition line between cold and temperate ice.The mixed boundary conditions, namely no-slip where the ice is cold and viscous sliding where it is temperate, induce large stresses and velocity changes close to the transition line. In fact, it is shown that, for a Newtonian fluid and all investigated discontinuities of boundary data, square-root singularities of the stresses will develop at the transition line. Asymptotic expressions for the basal stresses are derived. The explicit forms of these asymptotic expansions depend on the form of the spatial dependence of the sliding law and, furthermore, on the numerical values of the viscosity coefficient. It is, moreover, argued that the stress concentrations are sufficiently pronounced to account for the removal of basal rock especially in regions of high cleavage concentrations, the details again depending upon the sliding coefficients.No mathematical details of the problem solved are presented as attention is focused on the physical processes.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3