Passive underwater acoustic evolution of a calving event

Author:

Pettit Erin C.

Abstract

AbstractDirect measurements of processes occurring at the ice–ocean boundary are difficult to acquire because of the dangerous and dynamic nature of the boundary, yet these processes are among the least well understood in glaciology. Because sound travels well through water, passive underwater acoustics offers a method to remotely sense activity at this boundary. Here we present passive acoustic measurements and spectral analysis of the evolution of a subaerial calving event and the subsequent mini-tsunami and seiche at Meares Glacier, Alaska, USA. Using two hydrophones to record sound from 1 to 40 000 Hz, we find that each phase of a calving event has distinctive spectral characteristics. An event begins with an infrasound rumble (1–20 Hz), then the ice fractures (20–100 Hz), falls and impacts the water (200–600 Hz). High-frequency (>10 000 Hz) sound increases in intensity quickly as the iceberg oscillates, creating turbulence, spray and waves. Within 10 s, the low-frequency audible sound dissipates and the mini-tsunami and seiche sounds dominate (infrasound plus high frequencies) and continue for over 10 min. The specific frequencies and duration of each phase of a calving event depend on its size and location and the glacier and fjord characteristics.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3