Affiliation:
1. ACIBADEM UNIVERSITY, SCHOOL OF MEDICINE
2. MARMARA UNIVERSITY, FACULTY OF PHARMACY
3. FENERBAHÇE ÜNİVERSİTESİ, SAĞLIK HİZMETLERİ MESLEK YÜKSEKOKULU
4. MARMARA UNIVERSITY, SCHOOL OF MEDICINE
Abstract
Objective: The aim of this study was to assess the preventive effects of swimming exercise on kidney and bladder damage caused by a high-fat diet (HFD) using morphological and biochemical measures.
Methods: Sprague Dawley rats were fed either standard chow (CONT, 6% fat) or HFD (45% fat) for 18 weeks, these rats were divided into two subgroups at the last 6 weeks of the experiment. The exercise groups (CONT+EXC, HFD+EXC) were trained daily swimming sessions (1 h per day for 5 days/week) during the last 6 weeks. Kidney and bladder samples were prepared for light and electron microscopic examination at the end of experiment. Malondialdehyde, glutathione, interleukin-6, and tumor necrosis factor-α were measured by biochemically.Results: Regular morphology of renal cortex and urinary bladder mucosa were observed in the CONT and CONT+EXC groups. Degenerated renal corpuscles and proximal tubules in kidney and degenerated urothelium with leaky tight junctions and increase of mast cells in bladder mucosa were observed in the HFD group. Ameliorated renal cortex and bladder mucosa were observed in the HFD+EXC group. Moreover, malondialdehyde, glutathione, interleukin-6 and tumor necrosis factor- α levels were compatible with histological findings.
Conclusion: HFD induced kidney and bladder damage may have linked to increased oxidative damage. It was observed that histological damage and altered oxidative stress parameters were reversed with swimming exercise, and it is thought that moderate swimming exercise may have a role in the regulation of oxidative stress.
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献