Investigation of Neurogenesis in Kindled Wistar and Genetic Absence Epilepsy Rats

Author:

KANDEMİR Cansu1,YAVUZ Melis2,KARAKAYA Fatma Bedia3,ÇİLİNGİR-KAYA Özlem Tuğçe1,ONAT Filiz4,ŞİRVANCI Serap1

Affiliation:

1. MARMARA UNIVERSITY, SCHOOL OF MEDICINE

2. ACIBADEM UNIVERSITY, FACULTY OF PHARMACY

3. BEZMI ALEM FOUNDATION UNIVERSITY, SCHOOL OF MEDICINE

4. ACIBADEM UNIVERSITY, SCHOOL OF MEDICINE

Abstract

Objective: The most common type of epilepsy affecting about 50 million people worldwide is temporal lobe epilepsy (TLE). Chemical and electrical kindling methods in animals can be used to form TLE model. In the present study, it was aimed to investigate neurogenesis in the hippocampus of adult kindled Wistar rats and genetic absence epilepsy rats from Strasbourg (GAERS) rats by immunofluorescence methods. Methods: Adult Wistar and GAERS albino rats weighing 250-300 gr were injected pentylenetetrazole (PTZ) (35 mg/kg, s.c.) every other day to produce chemical kindling. Animals having 5 times grade 5 seizures were considered to be kindled. Intracardiac perfusion was performed under deep anesthesia on the 7th and 14th days after the last grade 5 seizure. Immunofluorescence methods were used to demonstrate newly formed neurons, astroglial cells, and mature neurons, by using anti-doublecortin (DCX), anti-glial fibrillary acidic protein (GFAP), and anti- neuronal nuclear antigen (NeuN) primary antibodies, respectively. Sections were then examined under a fluorescence microscope. Results: DCX (+) cells were found to be increased in GAERS control groups compared to the Wistar control groups; and in Wistar PTZ groups compared to the Wistar control groups. DCX (+) cells were decreased in GAERS PTZ groups compared to their controls and to Wistar PTZ groups. Conclusion: The findings of the present study suggest that the resistance to electrical kindling of GAERS reported in previous studies might be related to the increased neurogenesis in this strain.

Publisher

Marmara University

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3