Revealing the Potency of 1,3,5-Trisubstituted Pyrazoline as Antimalaria Through Combination of in Silico Studies

Author:

Rasyid Herlina,Soekamto Nunuk Hariani,Firdausiah Syadza,Mardiyanti Riska,Bahrun Bahrun,Siswanto Siswanto,Muhammad Aswad Muhammad Aswad,Saputri Wahyu Dita,Suma Artania A. T.,Syahrir Nur Hilal,Listyarini Risnita Vicky

Abstract

The potency of 1,3,5-trisubstituted pyrazoline as an antimalarial agent has been studied through quantitative structure-activity relationship, molecular docking, and molecular dynamics simulation as a combination of in silicostudies. The study commenced by applying quantitative structure-activity relationship (QSAR) to 25 derivative compounds using 3D-descriptor. The genetic algorithm and multiple linear regression analysis were used to construct the QSAR model, which resulting an equation that has Rtraining as 0.8100 and Rtest set as 0.9222. Descriptors involved in the QSAR equation are TDB4 m, TDB8s, RDF30e, and RDF552, all of which belong to the group of 3D autocorrelation and RDF. This result is in line with the principal component analysis, which shows that both group descriptors represent whole 3D descriptors. Molecular docking analysis is conducted to study the interaction between pyrazoline derivatives and the falcipain-2 enzyme. Interactions between compound 14 and falcipain-2 is describing by hydrogen bond against Glu14 amino acid residue, more pi-stacking interaction, and van der Waals. Chloroquine as a positive control also presented one hydrogen bond with Gly83, pi-sulfur against Cys42, and van der Waals. The stability of the ligand–enzyme interaction is evaluated by molecular dynamics simulation, and after 100 ns simulations, the root mean square deviation results show that compound 14 and chloroquine have a stable interaction with the falcipain-2 enzyme. Overall, this research provides the insight of 1,3,5-trisubstitued pyrazoline compounds as antimalaria by giving a QSAR equation and used to design a better falcipain-2 inhibitors.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3