Author:
R. Haryo Bimo Setiarto R. Haryo Bimo Setiarto,Harsi Dewantari Kusumaningrum Harsi Dewantari Kusumaningrum,Betty Sri Laksmi Jenie Betty Sri Laksmi Jenie,Tatik Khusniati Tatik Khusniati,Masrukhin Masrukhin,Sulistiani Sulistiani
Abstract
This research aimed to evaluate the viability, survivability, and release process of the encapsulated Lactobacillus plantarum SU-LS36 in the simulated gastric juice (SGJ), simulated intestinal juice (SIJ), and simulated colon juice (SCJ). We tested four types of encapsulations: native taro starch (NTS), modified taro starch (MTS) by heat moisture treatment (HMT), autoclaving-cooling-2 cycles (AC-2C), and maltodextrin (commercial encapsulant). We found that L. plantarum SU-LS36 with AC-2C-modified taro starch (MTS) showed the highest viability in SGJ (6.95 log CFU/g), SIJ (7.09 log CFU/g), and SCJ (7.85 log CFU/g) after incubation up to 4 h. AC-2C MTS dissolved or released more rapidly from its encapsulant material in the colon in SCJ than in NTS, HMT MTS, and maltodextrin. The longest time release of L. plantarum SU-LS36 encapsulated in AC-2C MTS was 3 h in SIJ conditions, 2 h in SGJ, and the fastest (1 h) in SCJ. The encapsulated L. plantarum SU-LS36 was released through a dissolution process (SGJ and SCJ) and by pancreatin activity (SIJ). Conclusively, AC-2C MTS could maintain the viability of L. plantarum SU-LS36 cells to the colon at 6.04 log CFU/g and fulfilled the minimum requirement of biovalue (MBV) probiotics set forth by the US FDA (6-7 log CFU/g).
Publisher
Penerbit Universiti Kebangsaan Malaysia (UKM Press)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献