Human Mesenchymal Stem Cell Derived from Bone Marrow and Umbilical Cord Display Anti-Cancer Activity in Cancer Cell Lines in Vitro

Author:

Fakharuzi Noor Atiqah,Lim Moon Nian,Abdul Rahman Zuhairi,Mohd Yusof Nurul Ain Nasim,Esa Ezalia,Shaik Fakiruddin Kamal

Abstract

The anti-tumour efficacy of engineered mesenchymal stem cell (MSCs) in cancers have been well documented by several reports. However, the impact of MSCs on the pathogenesis of solid cancers remains elusive. The study aims to elucidate the role of MSCs from bone marrow (BMMSCs) and umbilical cord (UCMSCs) on the proliferation, apoptosis and clonogenicity of cancer cell including H2170 (squamous cell carcinoma), LN18 (glioblastoma) and MCF7 (breast cancer) in vitro. Highest concentration of conditioned medium derived from the UCMSCs was significantly (p<0.001) effective to inhibit the proliferation of H2170 (25.8 ± 3.5%), LN18 (17.6 ± 6.5%) and MCF7 (33.2 ± 6.8%) as compared to 100% viability in basal. Both MSCs and its conditioned medium were able to significantly (p<0.001) induce apoptosis (early and late) to the H2170 and LN18 cells. However, for MCF7 cells, co-cultured with both MSCs had higher impact on the apoptosis as compared to their condition medium. Furthermore, conditioned medium from UCMSCs were able to significantly reduced the number of colonies in H2170 (609.5 ± 4.9) and LN18 (171.3 ± 12.6) as compared to control (H2170; 1196.3 ±12.8 and LN18; 253.3 ± 12.3), suggesting that these two cancer cells are sensitive to the MSCs. Notably, by co-culturing of all three cancer cell lines with the MSCs’ conditioned medium, we found that there was an increased expression of more than two-fold in BAX, BAD, and APAF1 genes showing the ability of MSCs’ conditioned medium to induce the intrinsic apoptosis pathway in the cancer cells. Collectively, our findings demonstrated that the MSCs could induce apoptosis and inhibit both H2170 and LN18 cancer cell proliferation. Furthermore, this study did not find evidence of MSCs in enhancing tumorigenic characteristics of these cancer cells, and thus we postulate that MSCs are basically safe as a cell-based therapy in cancer treatment.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3