Author:
AZIIDA NANYONGA,MALEK SORAYYA,AZIZ FIRDAUS,IBRAHIM KHAIRUL SHAFIQ,KASIM SAZZLI
Abstract
Hybrid combinations of feature selection, classification and visualisation using machine learning (ML) methods have the potential for enhanced understanding and 30-day mortality prediction of patients with cardiovascular disease using population-specific data. Identifying a feature selection method with a classifier algorithm that produces high performance in mortality studies is essential and has not been reported before. Feature selection methods such as Boruta, Random Forest (RF), Elastic Net (EN), Recursive Feature Elimination (RFE), learning vector quantization (LVQ), Genetic Algorithm (GA), Cluster Dendrogram (CD), Support Vector Machine (SVM) and Logistic Regression (LR) were combined with RF, SVM, LR, and EN classifiers for 30-day mortality prediction. ML models were constructed using 302 patients and 54 input variables from the Malaysian National Cardiovascular Disease Database. Validation of the best ML model was performed against Thrombolysis in Myocardial Infarction (TIMI) using an additional dataset of 102 patients. The Self-Organising Feature Map (SOM) was used to visualise mortality-related factors post-ACS. The performance of MLmodels using the area under the curve (AUC) ranged from 0.48 to 0.80. The best-performing model (AUC = 0.80) was a hybrid combination of the RF variable importance method, the sequential backward selection and the RF classifier using five predictors (age, triglyceride, creatinine, troponin, and total cholesterol). Comparison with TIMI using an additional dataset resulted in the best ML model outperforming the TIMI score (AUC = 0.75 vs. AUC = 0.60). The findings of this study will provide a basis for developing an online ML-based population-specific risk scoring calculator.
Publisher
Penerbit Universiti Kebangsaan Malaysia (UKM Press)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献