Fatty Acid Profiling and Physiochemical Characterization of Chlorella sorokiniana Potentially Used for Biofuel Production

Author:

Ammar Muhammad,Omer Maria,Aman Sitwat,Abdul Hameed Abdul Hameed,Abbas Safdar,Shaheen Shabnam,Abbas Aiman,Shakeel Samina N

Abstract

Rising oil prices and climate change have resulted in more emphasis on research into renewable biofuels. In this study, different water samples were collected from local vicinities for the isolation of local isolates of microalgae to check their potential towards the production of biofuel by the addition of different chemical substrates. Five different concentrations of ascorbic acid and iron (III) chloride (0, 1, 2.5, 5 & 10 µM) are used as substrates. Microscopic analysis evaluated that samples belong to genus Chlorella and further molecular identification showed that the samples are C. sorokiniana. Among all the concentrations of ascorbic acid 2.5 µM is most effective against the C. sorokiniana strain 1 (Safari Wildlife Park, Lahore) and C. sorokiniana strain 2 (Bahria Town, Lahore) while C. sorokiniana Strain 3 (SukhChane Society, Lahore) responded at 2.5 & 5 µM in term of biomass production. FeCl3 (2.5 µM) is effective against C. sorokiniana strain 1 while the growth of C. sorokiniana strain 2 and C. sorokiniana Strain 3 is inhibited. Lipid content analysis showed that only the C. sorokiniana strain 1 shows effective results at 1 & 2.5 µM of ascorbic acid and FeCl3, respectively. Those concentrations which give the significant results of lipid production were preceded for fatty acid profiling. Results indicate that the C. sorokiniana strain 1 can be considered as a source of alpha-linolenic acid; the basic constituent of biofuel production. In this study, it is concluded that C. sorokiniana strain 1 is useful for the production of environment friendly biofuel.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3