IRE1α Promotes Cell Apoptosis and an Inflammatory Response in Endoplasmic Reticulum Stress-Induced Rheumatoid Arthritis Fibroblast-Like Synovial Cells by Enhancing Autophagy

Author:

Yang Jialiang,Ma Zhenzhen,Jia Qian,Li Yanshan,Lu Yucheng,Yang Qingrui

Abstract

Endoplasmic reticulum (ER) stress can induce autophagy via the unfolded protein response (UPR), and autophagy can regulate the activation of inflammasomes. Inositol-requiring enzyme 1α (IRE1α) is a transducer of the UPR in cells with ER stress. Here, we investigated the role of IRE1α and its impact on ER stress in rheumatoid arthritis fibroblast-like synovial cells (RA-FLSs). RA-FLSs were isolated from rheumatoid arthritis (RA) patients and stimulated with thapsigargin (TG) to produce ER stress cells. ER stress-, autophagy and the expression of apoptosis-associated factors were investigated by western blotting and the qRT-PCR. Cellular ROS levels were assessed by flow cytometry. ELISAs were performed to determine the concentrations of inflammatory mediators. TG treatment promoted IRE1α, GRP78, CHOP, and ATP6 mRNA and protein expression. ROS generation was increased in TG-induced RA-FLSs; additionally, TG was found to induce cell inflammation by upregulating the expression of inflammasome markers and the concentrations of inflammatory mediators. The levels of autophagy markers, apoptosis-associated proteins, and mRNA were increased in TG-stimulated RA-FLSs. However, transfection with si-IRE1α suppressed TG-induced increases in ROS generation, inflammation levels, cell apoptosis, and autophagy in RA-FLSs. Treatment with the autophagy activator RAPA attenuated the protective effects of IRE1α silencing on TG-induced RA-FLS apoptosis and inflammatory damage. Our findings showed that in RA-FLSs, IRE1α silencing alleviated ER stress-induced inflammation and apoptosis caused by autophagy.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3