Comparative Study of Clustering-Based Outliers Detection Methods in Circular-Circular Regression Model

Author:

Satari Siti Zanariah,Muhammad Di Nur Faraidah,Zubairi Yong Zulina,Hussin Abdul Ghapor

Abstract

This paper is a comparative study of several algorithms for detecting multiple outliers in circular-circular regression model based on the clustering algorithms. Three measures of similarity based on the circular distance were used to obtain a cluster tree using the agglomerative hierarchical methods. A stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height was used as the cutoff point and classifier to the cluster group that exceeded the stopping rule as potential outliers. The performances of the algorithms have been demonstrated using the simulation studies that consider several outlier scenarios with a certain degree of contamination. Application to real data using wind data and a simulated data set are given for illustrative purposes. Thus, it has been found that Satari’s algorithm (S-SL algorithm) performs well for any values of sample size n and error concentration parameter. The algorithms are good in identifying outliers which are not limited to one or few outliers only, but the presence of multiple outliers at one time.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3