Glucomannan Content Stability of Eddoe Taro Tuber based on Parametric, Non-Parametric, and Ammi Analysis

Author:

Maretta Delvi,Helianti Is,Santosa Edi,Diaguna Ridwan,Purwono Purwono,Sobir Sobir

Abstract

The consumption of taro tuber as an energy source is widespread due to its composition of complex carbohydrates, including starch and non-starch polysaccharides. Glucomannan is one of the non-starch polysaccharides found in taro tuber and has been shown to be a dietary fiber with positive effects on health and beauty. The development of new varieties of taro tuber with high glucomannan content is challenging and requires significant effort in order to produce high-quality food. Therefore, this study aimed to investigate the stability of glucomannan content among 14 eddoe taro tuber genotypes using parametric, non-parametric, and AMMI methods, and to determine genotypes with high glucomannan stability. The experiments were conducted in three different agro-climatic locations using a randomized full-block design. Glucomannan content of taro tuber was analyzed from a mixture of corms and cormlets harvested 5 months after planting following the gravimetric method. The combined analysis of variance for glucomannan content showed significant effects of the environment, genotypes, and G×E interaction. Genotypes S7, S35, S15, S18, S17, S34, and S24 produced glucomannan levels higher than the overall average, but genotypes S7, S17, S18, and S34 consistently displayed higher glucomannan content than the average in each experimental site. Parametric and non-parametric measurements provided comparable results. Based on parametric stability analysis, genotype S34 showed high-rank stability (Wᵢ², σ²ᵢ, CVi value). Additionally, genotypes S34 and S18 demonstrated high stability according to bᵢ, and genotypes S17 exhibited stability according to the s²dᵢ value. Non-parametric stability analysis showed that S34 was the most stable genotypes base on Nassar Huehn, Kang-Rangksum, and Thennarasu theories. Genotypes S7 was also identified as stable, according to Kang-Rangksum. The AMMI analysis indicated that genotypes S34, S17, and S7 were high glucomannan yielders, with S34 displaying wide adaptation and S17 and S7 having specific location adaptation.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3