Mapping Sea Grass Coverage of Tanjung Benoa Bali Using Medium Resolution Satellite Imagery Sentinel 2B

Author:

Zainul Hidayah,De Oliveira Vieira Lucas,Rahma Safitri,Herlambung Aulia Rachman,Abdur Rahman As-Syakur Abdur Rahman As-Syakur

Abstract

Seagrass beds are important components of a coastal ecosystem. This ecosystem serves as the primer producers of the water food chain, habitat for marine biota, produces organic carbon, and indirectly contributes to the economic well-being of coastal communities. However, the ecosystem is vulnerable to damage caused by natural factors and human activities. The objectives of this study were, firstly to identify the distribution of seagrass beds in Tanjung Benoa using Sentinel 2B satellite imagery and secondly to compare classification results from two different approaches namely pixel-based image classification and object-based image classification. Accuracy-test was carried out using field data reference of 195 sample points in the form of a 10 m X 10 m transect. The image pre-processing process was conducted with Bottom of Atmosphere (BoA) correction using the Dark Object Subtraction (DOS) method. Furthermore, the water column correction was performed using the Depth Invariant Index (DII) and the Lyzenga algorithm. The mapping results showed that the area of seagrass beds in the shallow waters of Tanjung Benoa reaches 242.99 ha. There were seven seagrass species in the study area, with an average cover of 75%. The accuracy of object-based image classification was higher than that of pixel-based classification with a difference up to 25% for six classes classification and 15% for two classes classification. Excellent results for classifying seagrasses based on cover density can be obtained when high-resolution satellite imagery and OBIA are combined with the SVM or Fuzzy Logic algorithm.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3