Diorganotin(IV) N-methyl-N-phenethyldithiocarbamate Compounds Induce Cytotoxicity via Apoptosis in K562 Human Erythroleukaemia Cells

Author:

Syed Annuar Sharifah Nadhira,Kamaludin Nurul Farahana,Awang Normah,Chan Kok Meng,Uttraphan Pim Norraphat

Abstract

Imatinib mesylate (IM), a leading treatment for chronic myeloid leukaemia (CML), has sparked worries about the possibility of CML patients developing a resistance to it. As a result, researchers are becoming more interested in organotin(IV) compounds due to their strong potential to be developed as anticancer agents and employed as an option to address the issues regarding IM-resistance therapy. Generally, this study is to determine the cytotoxicity induced by diorganotin(IV) dithiocarbamate compounds in K562 human erythroleukaemia cells. The two novel diorganotin(IV) compounds namely diphenyltin(IV) N-methyl-N-phenethyldithiocarbamate (C1) and dibutyltin(IV) N-methyl-N-phenethyldithiocarbamate (C2) were assessed their cytotoxicity via MTT [3-(4-5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and mode of cell death via Annexin V-FITC/PI assay with the duration treatment of 24 h. Both compounds displayed strong cytotoxicity in K562 cells. At concentration of 4.2 µM for C1 and 1.6 µM for C2, both compounds were able to induce 49.70% and 46.83% apoptotic events, respectively. The changes in cells' morphological can also be seen 24 h after being exposed to the compounds at their respective IC50 doses. The findings demonstrated that the morphology of the cells was similar to apoptotic features, including cell shrinkage and the production of apoptotic bodies, meanwhile, the low levels of necrotic cells (<1%) also can be seen via cell lysis. In conclusion, both compounds possess the potential as antileukaemia drugs nevertheless, further studies on their action mechanism are required to ratify their qualities and suitability in the research of anticancer drugs development.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3