Analysis of Mg(OH)2 Deposition for Magnesium Air Fuel Cell (MAFC) by Saline Water

Author:

Basri Sahriah,Hazri Nurul Shahzira,Selladurai Shanjeva Rao,Zainoodin A.M.,Kamarudin S.K.,Zakaria S.U.,Hashim A.R.

Abstract

Magnesium air fuel cell (MAFC) systems are eco-friendly fuel cells that use electrolytes of saltwater and oxygen from the air to produce power. However, MAFC cells face a critical problem, which is the deposition of side products on the surface of the Mg anode plate and the cathode electrode. Therefore, this study will focus on the analysis of factor on Mg(OH)2 deposition by identifying the optimal seawater, Mg alloy, and surface roughness and additives solution. Magnesium plates AZ31 are used as the anode, and air electrode as the cathode. This study also considers physical characteristics such as SEM, EDX and corrosion test while chemical characterization by performance test with difference electrolyte, anode, and roughness. Catechol-3,5-disulfonic acid disodium salt (tiron) as anti-deposition used to reduce the deposition of Mg(OH)2 on the anode and cathode surfaces and thus improve the performance of MAFC. From the performance study, the MAFC able to produce a power density of 27.54 mW/cm2 which is high compare to the MAFC without tiron. Therefore, with the active area by 110.25 cm2, the MAFC generates 2.93 W. The deposition of Mg(OH)2 reduces the active area of magnesium oxidation, thus, reduce the electricity generation. With the knowledge of optimal seawater concentration and improvement of a single fuel cell system, this study is expecting to assist the fisheries and aquaculture sector as well as the coastal communities in terms of providing a better, safer, and cheaper alternative source of electricity.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3