Effect of Sn Plating Thickness on Wettability, Solderability, and Electrical Connections of Electronic Lead Connectors for Surface Mount Technology Applications

Author:

Abu Bakar Maria,Mohamed Sunar Mohamad Solehin,Jalar Azman,A Atiqah,Che Ani Fakhrozi,Ahmad Ibrahym,Zolkefli Zol Effendi

Abstract

The wettability of solder is important to achieve good solderability between the electronic component and printed circuit board (PCB). Tin (Sn) plating is widely used to promote the wettability of the solder on the substrates. However, an adequate amount of Sn plating thickness must be taken into consideration to acquire good wettability and solderability. Thus, this study investigates the Sn plating thickness of the electronic lead connector and their effect on the wettability and electrical connection. Two types of Sn plating thicknesses, ~3 μm, and 5 μm were applied on the electronic lead connector surface. It was found that the thin Sn plating thickness of ~3 μm has shown failure in electrical connections and lack of solder joint wettability and solderability properties. A thicker Sn plating thickness of 5 μm, has shown better wettability and solderability properties. In addition, the electrical connections also passed which implies that the thicker Sn plating thickness provides good solder joint establishment leading to good electrical connections. It is also observed that the better wettability of solder has been achieved for thicker Sn plating thickness. The finding from the field emission scanning electron microscope (FESEM) shows that the intermetallic compound (IMC) layer growth in the lead connector surface is regarded as abnormal for thin Sn plating thickness (~3 μm), in which the IMC layer was consumed and penetrating up to the surface of Sn-coating. This has led to poor solderability of the thin Sn plating with the solder to establish solder joint. The findings from this study have shed some light upon a better understanding of the importance of considering the adequate amount of Sn coating thickness to avoid IMC consumption at the Sn plating, better wettability properties, solderability, and solder joint quality for surface mount technology (SMT) especially for electronic lead connector applications.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3