Synthesis and Characterization of Metal Sulfates Loaded Palm Empty Fruit Bunch (PEFB) for Biodiesel Production

Author:

Ishfaq Rahila,Ruslan Nurun Najwa,Attan Nursyafreena,Jikan Suzi Salwah,Ameruddin Amira Saryati

Abstract

Biodiesel has been globally accepted as a green substitute for diesel fuel. However, the insecurity of food raised with the application of edible sources in biodiesel production has caused much debate. The feasible alternative technique is the use of inedible and low-grade sources such as palm fatty acid distillate (PFAD). In this work, the production of biodiesel (FAME) from PFAD using solid acid catalysts (SACs) derived from palm empty fruit bunch (PEFB) is investigated. The SACs were synthesized through impregnation of different metal sulfate precursors, i.e. ferrous sulfate heptahydrate (FeSO4.7H2O), copper sulfate pentahydrate (CuSO4.5H2O), and magnesium sulfate heptahydrate (MgSO4.7H2O) over PEFB. SEM-EDX observations found that impregnation and then calcination resulted in attachment of sulfur (S) and improved surface porosity. FT-IR analysis showed that there were distinct interactions between metal sulfates and PEFB. XRD characterization showed that the prepared catalysts have a crystalline structure. Besides, the catalytic activity of the SACs was closely associated with their acid densities measured by the titration method. Fe-PEFB catalyst showed the highest acid density (2.44 mmol/g) among the catalysts studied. To study the effect of process parameters on FFA conversion (%), optimization of methanol: PFAD molar ratio, catalyst dosage, reaction temperature, and reaction time was conducted. Maximum FFA conversion of 89.1% was obtained over Fe-PEFB while Cu-PEFB and Mg-PEFB achieved an FFA conversion of 63 and 56.5%, respectively, under the optimum reaction conditions. Thus, the present study offers a sustainable and environmentally benign method for biodiesel production.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effectiveness of empty fruit bunch ash as the catalyst for palm oil transesterification;South African Journal of Chemical Engineering;2024-10

2. Homogeneous and Heterogeneous Catalysis in Biodiesel Production;The Production of Biodiesel and Related Fuel Additives;2024-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3