Effects of %FIMA on Storage-Safety Parameters of Spent Fuel from Experimental Pebble-Bed Reactor

Author:

Aisyah Aisyah,Mirawaty Mirawaty,Saputra Dwi Luhur Ibnu,Setiawan Risdiyana,Artian Pungky Ayu,Ratiko Ratiko,Nasruddin Nasruddin

Abstract

The back end of the utilization of nuclear technology is safety and management of spent fuel, which is a key element contributing to the success of the nuclear power plant program. Indonesia’s National Nuclear Energy Agency resolved to establish an experimental power reactor, called RDE, as a nuclear power plant demo. The fuel of this reactor is similar to that of German’s experimental pebble-bed reactor (PBR), Arbeitsgemeinschaft Versuchsreaktor(AVR). In this study, the spent fuel of AVR was studied to obtain the safety parameter data for storage of RDE spent fuel by varying the fission in the initial metallic atoms (%FIMA). These parameters that must be studied include the radioactivity, decay heat, proliferation threats of both 239Pu and 235U, and the presence of 137Cs, a dangerous fission product that can escape from damaged spent fuels. The calculation was conducted by ORIGEN 2.1. The result of the study demonstrates a higher %FIMA indicates a higher safety level that is required since the activity and decay heat of the spent fuel will increase and, as will be the total amounts of 239Pu and 137Cs. However, the 235U amount will decrease. For a 100 years storage of spent fuel, the optimum %FIMA is 8.2 with a canister capacity of 1,900 pebbles. Further, the activity and decay heat of the spent nuclear fuel are 2.013 × 1013 Bq and 6.065 W, respectively. The activities of 239Pu, 137Cs, and 235U are 5.187 ×1011, 7.100 × 1012, and 7.339 × 107 Bq, respectively.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radioactive Fission Waste of The Conversion of High-Enriched Uranium to Low-Enriched Uranium Target on 99Mo Production;IOP Conference Series: Earth and Environmental Science;2023-06-01

2. Radioactive Fission Waste from Molybdenum-99 Production and Proliferation Risks;IOP Conference Series: Earth and Environmental Science;2021-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3