Characterization Assessment on Nanofiltration Membrane using Steric-Hindrance Pore (SHP) and Teorell-Meyer-Sievers (TMS) Models

Author:

Abu Seman Mazrul Nizam,Ali Nora’aini,Jalanni Nurul Ain,Che Ku Yahya Che Ku Muhammad Faizal,Yatim Norhafiza Ilyana

Abstract

Interfacial polymerization (IP) is a simple process for modifying thin-film composite (TFC) polymers that can be used as separation membranes in water treatment. This work describes the IP process for the preparation of polyester TFC membranes using organic monomers, in particular triethanolamine (TEOA) and trimesoyl chloride (TMC). This work includes an evaluation of monomer concentration and polymerization reaction time as variables to determine the membrane properties and its performance as acid humic removal. The characterization of TFC membranes was investigated using field emission scanning electron microscopy (FESEM), steric hindrance pore (SHP) and Teorell-Meyer-Sievers model (TMS). This IP technique resulted in the membrane (NF-PES8-35) having the lowest contact angle (θ=34.0±0.35) and lower hydrophobicity (θ=62.6 ± 0.33) compared to the unmodified membrane. The rejection of NaCl by NF-PES8-35 membrane showed the highest 0.001 M NaCl (62.42%), while NF-PES4-15 membrane showed the lowest (2.4%). The highest removal of humic acid (97.8%) was achieved when separation was performed with the NF-PES6-35 membrane and the high performance polyester TFC membranes were exhibited in the water purification filtration system.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3