Rapid Manipulation of Extracellular Vesicles using Dielectrophoretic Mechanism

Author:

Jamaludin Nur Mas Ayu,Abdul Rahim Muhammad Khairulanwar,Hamzah Azrul Azlan,Abu Nadiah,Buyong Muhamad Ramdzan

Abstract

Extracellular vesicles (EVs) are small entities that are released by most cell types. EVs are important form of intercellular communication and a rich source of biomarkers for a wide variety of diseases. Many methods for EVs isolation have been utilized, however, most of them have significant drawbacks including lengthy processing time, high cost, shortfalls in selectivity and surface marker dependency. In consideration of these issues, this paper discussed on the dielectrophoresis (DEP) microelectrode method designed to rapidly isolate EVs from its medium. The advantage of this DEP microelectrode is the capability of isolating EVs using a droplet of 1 μL placed onto the microelectrode within 30 s and 20 V peak-to-peak (Vp-p) of alternating current (AC). The method used in the characterization of sample are dynamic light scattering (DLS) and transmission electron microscopy (TEM); both prove the heterogeneity of EVs’ population and the EVs appear to be spherical with size ranging from 40 to 200 nm. The experimental results from this preliminary experiment show that the DEP microelectrode was able to manipulate EVs as evidenced by the negative dielectrophoresis (NDEP) fluorescent images. Further investigation of grid analysis conducted shows the consistency of the theory and the results presented. Corrected Total Cell Fluorescence (CTCF) values from the grid analysis concluded that the EVs were manipulated to the center of region of interest, (ROI). Therefore, this DEP technique suggests a rapid strategy for EVs isolation from its medium in small quantity while maintaining accuracy and cost-effectivity.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3