Mass Transfer of a Thermally Radiative MHD Cattaneo-Christov Nanofluid between Two Stretchable Spinning Disks

Author:

Habu Peter Ngbo,Al’Aidrus Sharifah Nuriza,Mohd Noor Noor Fadiya,Siri Zailan

Abstract

The investigation on the impacts of magnetic field, thermal radiation, generation of heat and mass transfer in a porous-medium-embedded homogenous nanofluid flow between two stretchable spinning disks is crucial since spinning disks are prevalent in many engineering and technological applications. The objective of this research was to analyze the influences of these parameters using the Cattaneo-Christov heat flux model against the flow’s temperature, velocity and concentration profiles. Temperature profile is a decreasing function of thermal relaxation time parameter due to the particles require a longer period to transfer heat to the next particles. The rates of heat transfer at both spinning disks decrease as values of heat generation, Eckert number, Prandtl number, Brownian diffusion, thermophoresis diffusion and rotation ratio increase. The disks’ rates of mass transfer decrease with more thermophoresis diffusion, heat generation, heat transfer dissipation, and momentum diffusivity, but they increase with thermal radiation parameter. The current work attempts to include the transport profile of a Buongiorno’s nanofluid embedded in a Darcian porous medium between dual spinning disks with magnetic field, thermal radiation and generation of heat using the heat flux model of Cattaneo-Christov’s. Von Karman transformations are utilized to transform the nonlinear partial differential equations of fluid dynamics into coupled nonlinear ordinary differential equations (ODEs). These coupled ODEs are later solved by employing a shooting method with MATLAB bvp4c algorithm. All numerical evidences from this investigation are conferred through tables and figures after validation of present computations.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3