Impact Behaviour of Aluminum Particles upon Aluminum, Magnesium, and Titanium Substrates using High Pressure and Low-Pressure Cold Spray

Author:

Manap Abreeza,Mahalingam Savisha,Yusof Siti Nurul Akmal,Afandi Nurfanizan,Abdullah Huda

Abstract

This study is focused on the impact and residual stress behaviour of aluminum component repair using aluminum powder via two different types of cold spray processes; high pressure cold spray (HPCS) and low-pressure cold spray (LPCS). It has been carried out via smoothed particle hydrodynamics simulations, comparing aluminum substrate with other lightweight materials such as titanium and magnesium. The obtained results have shown that the impact behaviour is influenced by velocity, porosity, deformation behaviour, flattening ratio, total energy and maximum temperature. The aluminum particles impacting on aluminum substrates using LPCS is slightly deformed, with the smallest flattening ratio leading to less pore formation between the particles. This has subsequently resulted in good coating quality. Furthermore, HPCS has contributed greatly to the deposition of particles on the heavier and harder substrate, such as titanium substrate. Thus, the overall result indicates that LPCS is better for repairing aluminum component compared to HPCS.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3