Preparation and Characterization of Copper, Iron, and Nickel Doped Titanium Dioxide Photocatalysts for Decolorization of Methylene Blue

Author:

Qaderi Jawed,Mamat Che Rozid,Abdul Jalil Aishah

Abstract

The visible-light response is a necessary condition for titanium dioxide (TiO2) photocatalyst to function as a visible light active photocatalyst. This condition can be solved by investigation of the bandgaps and the optimization of doping levels of multivalency metal-doped TiO2. In this study, pure and Cu, Fe, and Ni-doped TiO2 photocatalysts were prepared by the sol‐gel method. The photocatalysts were characterized using XRD, FTIR, FESEM, EDX, N2 physisorption, and UV‐Vis spectrophotometry techniques. The XRD patterns of all pure TiO2 and Cu/TiO2, Fe/TiO2, and Ni/TiO2samples showed the dominant structure of the anatase TiO2 phase. The presence of functional groups at the interface of TiO2 particles was showed by FTIR. The FESEM analysis showed that the particle size of the prepared samples was uniform with spherical morphology. EDX results showed that TiO2 has successfully incorporated Cu, Fe, and Ni metals onto its surface. The BET analysis showed that the specific surface area of the doped samples increased with the amount of doping. The optical properties of all samples were carried out using UV-DRS measurements and their obtained bandgap energies were in the range of 3.22 - 3.42 eV. The pure TiO2 displayed more than 98% and 97% decolorization rates for MB solution at the end of irradiation time of 5 h under UV and visible light, respectively. Among the doped samples, 3 mol% Ni/TiO2 and Cu/TiO2 demonstrated the highest photocatalytic activity (97.65%) under UV light and 6 mol% Ni/TiO2 under visible light for MB (96.86%) decolorization.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3