A Quinoline-Based Fluorescent Labelling for Zinc Detection and DFT Calculations

Author:

Mohamad Nur Syamimi,Tan Ling Ling,Goh Choo Ta,Lee Yook Heng,Mobarak Nadhratun Naiim,Mat Lazim Azwan,Sapari Suhaila,Abdul Razak Fazira Ilyana,Hassan Nurul Izzaty

Abstract

8-carboxamidoquinoline derivatives were gradually investigated as zinc's label in resolving weak water solubility, poor membrane permeability, and difficulty measuring free Zn2+ ion in cells quantitatively. The potential of 2-oxo-2-(quinolin-8-ylamino)acid (OQAA) as zinc's label was prepared and characterized spectroscopically. Theoretical and experimental data of OQAA were compared and discussed. The optimized molecular structure, molecular orbital of HOMO-LUMO, energy band gaps, and molecular electrostatic potential (MEP) of OQAA were carried out using the DFT method with Becke-3-Parameter-Lee-Yang-Parr (B3LYP) and 6-31G(d,p) basis set. The intermolecular interaction energy of OQAA-Zn is calculated by using the hybrid method of GEN with a basis set of LANL2DZ for Zn2+ ion and DFT/6-31G(d,p) for OQAA ligand. OQAA exhibited remarkable and excellent fluorescence enhancement selective and qualitatively only for Zn2+ than other metal cations tested (Fe2+, Cu2+, Co2+, Ni2+, Hg2+, Cd2+) under a long wavelength. Job's plot and 1H NMR titrations indicate OQAA-Zn2+ has a binding ratio at 1:1 stoichiometry (M1L1). Substantial shifting of amide N-H proton to higher chemical shift and intensity of the proton peak of N-H amide decrease abruptly implies that Zn2+ is binding to an amide. These changes confirmed interactions among the ligand OQAA and metal Zn2+ ion. As a result of the benefits discussed, OQAA could effectively and selectively optimize and fabricate for Zn2+ sensors.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3