Bamboo Fruit Storage Chamber (FSC) Equipped with Ethylene-Degrading Manganese Doped Titanium Oxide Nanomaterial as Storage for Banana (Musa acuminata)

Author:

Raharjani Sophie Anggitta Raharjani,Aiman Afandi Faris,Rizanti Meirifa,Devy Naviana Devy Naviana,Kevin Amadeus Sumendap Kevin Amadeus Sumendap,Rizkita Rachmi Esyanti Rizkita Rachmi Esyanti

Abstract

As a climacteric fruit, banana undergoes rapid ripening induced by the hormone ethylene, which is produced by autocatalytic reactions. Titanium dioxide is a photocatalytic compound with the ability to degrade ethylene to water and carbon dioxide. This compound can be used to control the concentration of ethylene inside storage chambers to delay the ripening process of bananas in storage. A passive modified atmosphere is another method to delay ripening by using storage spaces with limited air flow. This study attempts to investigate the performance of TiO2-Mn and bamboo fruit storage chamber (FSC) to delay the ripening of bananas by measuring characteristic physiological changes for 7 days which included ethylene accumulation in storage space, rate of ethylene production, rate of respiration, starch content, and soluble sugar content. The results show that the use of FSC in combination with TiO2-Mn can be used to delay the ripening of bananas. This study also investigated the effect of volumetric occupation to the efficacy of FSC by varying the number of banana fingers in storage and varying the volume of the chamber. While the volume of the FSC did not produce a significant difference in performance, the number of bananas stored in each FSC greatly influenced the delay-ripening ability of FSC with TiO2-Mn. At the end of the study, a profile plotted with MATLAB is presented to show the relationship of ethylene concentration in FSC in respect to storage time and number of fingers stored.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3