A Remedial Measure of Multicollinearity in Multiple Linear Regression in the Presence of High Leverage Points

Author:

Saied Ismaeel Shelan,Midi Habshah,Taher Omar Kurdistan M.

Abstract

The ordinary least squares (OLS) is the widely used method in multiple linear regression model due to tradition and its optimal properties. Nonetheless, in the presence of multicollinearity, the OLS method is inefficient because the standard errors of its estimates become inflated. Many methods have been proposed to remedy this problem that include the Jackknife Ridge Regression (JAK). However, the performance of JAK is poor when multicollinearity and high leverage points (HLPs) which are outlying observations in the X- direction are present in the data. As a solution to this problem, Robust Jackknife Ridge MM (RJMM) and Robust Jackknife Ridge GM2 (RJGM2) estimators are put forward. Nevertheless, they are still not very efficient because they suffer from long computational running time, some elements of biased and do not have bounded influence property. This paper proposes a robust Jackknife ridge regression that integrates a generalized M estimator and fast improvised Gt (GM-FIMGT) estimator, in its establishment. We name this method the robust Jackknife ridge regression based on GM-FIMGT, denoted as RJFIMGT. The numerical results show that the proposed RJFIMGT method was found to be the best method as it has the least values of RMSE and bias compared to other methods in this study.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3