Numerical Modelling of Shallow Foundation on Multi-Layer Soil with varying Stiffness

Author:

Hakro Muhammad Rehan, ,Kumar Aneel,Almani Zaheer,Ali Shah Syed Raghib, , ,

Abstract

The load-deformation observation under the footing is essential for foundation design. Either experimental methods or numerical modelling generally determines this phenomenon in engineering practices. This study determined the settlement of shallow foundations on Multi-layer soil profile numerically. The settlement behavior was investigated through numerical modelling with Plaxis 2D. This study site was Jamshoro region, located in province Sindh, Pakistan. From the geotechnical investigation, the soil of Jamshoro region consists of a combination of different soils, mainly shale and limestone. This type of soil shows common challenges for the serviceable and sustainable design and construction of structural foundations. The standard penetration test conducted accompanied by other geotechnical tests on shale and limestone to determine the input parameters for the model and observe the soil profile. The Mohr-Coloumb model used for shale and linear elastic for limestone. The settlement of the foundation is attended by varying the limestone layer’s depth. In this research, the settlement reduced under the footing by increasing the thickness of the limestone layer. The study observed that stiffness of lower layer significantly reduces the settlement of shallow foundation. Therefore, the effect of lower layer should be considered for the designing of foundation on multi-layered soil.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3