Stabilization Expansive Clayey with Nano-Lime to Reduce Environmental Impact

Author:

Firoozi Ali Akbar, ,Naji Maryam,Firoozi Ali Asghar, ,

Abstract

For years, geotechnical engineers have been concerned about expansive soils. Expansive soils are characterized by large volumetric changes related to variations in moisture content. Variations in soil water content may take place naturally during seasonal changes or maybe manmade caused by dewatering activities. The quantity of shrinkage and swell is influenced by numerous parameters, including the quantity of minerals clay in the soil, moisture content, dry density, and climate change. In most countries, numerous structures, including pavements and buildings, are damaged as a result of this shrinkage/swelling. Several ground improvement techniques are available for stabilizing expansive soil to modify its engineering performance. These methods include soil replacement, mixing with chemical additives, and soil reinforcement. The present study expressions the effect of nano-lime (i.e., 0.1, 0.3, 0.5, 0.7, 1.0, 2.0 and 3.0%), and lime (1, 3, 5, 8, and 10%), as chemical additive to improve clayey soil (i.e., illite and kaolinite). The effect of nano-lime and lime were investigated using Atterberg’s limits tests. The Atterberg limits were screening significant changes in the proportion of additional nano-lime and lime. The results show that less amount of nano-lime (1% and 2% for illite and kaolinite respectively) decreased the plastic limit, while for lime it was reported 8% for illite and 5% for kaolinite respectively. In conclusion, less quantity of nano-lime (1-2%) is able to improve soil parameters.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanotechnology-Based Formulation Approaches in Phytopharmaceuticals;Medicinal Applications of Phytopharmaceuticals;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3