Solving SEI Model using Non-Standard Finite Difference and High Order Extrapolation with Variable Step Length

Author:

Md Isa Muhamad Hasif Hakimi, ,Razali Noorhelyna,Gorgey Annie,Imran Gulshad, , ,

Abstract

A high-level method was obtained to solve the SEI model problem involving Symmetrization measures in numerical calculations through the Implicit Midpoint Rule method (IMR). It is obtained using Non-Standard Finite Difference Schemes (NSFD) with Extrapolation techniques combined. In solving differential equation problems numerically, the Extrapolated SEI model method is able to generate more accurate results than the existing numerical method of SEI model. This study aims to investigate the accuracy and efficiency of computing between Extrapolated One-Step Active Symmetry Implicit Midpoint Rule method (1ASIMR), Extrapolated One-Step Active Symmetry Implicit Midpoint Rule method (2ASIMR), Extrapolated One-Step Passive Symmetry Midpoint Rule method (1PSIMR) and the extrapolated Two-Step Passive Symmetry Midpoint Rule method (2PSIMR). The results show that the 1ASIMR method is the most accurate method. For the determination of the efficiency of 2ASIMR and 2PSIMR methods have high efficiency. At the end of the study, the results from the numerical method obtained show that Extrapolation using Non-Standard Finite Difference has higher accuracy than the existing Implicit Midpoint Rule method.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3