CFD Investigation of Methane Combustion with Excess Air in Can-Type Gas Turbine Combustor

Author:

,Zahir Md Shamsuzzaman,Hasini Hasril, ,Om Nur Irmawati, ,Riyandwita Byan Wahyu, ,Mansyur Norfadilah,

Abstract

This paper presents an investigation on the effect of excess air to combustion characteristics in a full-scale, gas turbine combustor, commonly used in power plant. The investigation was carried out using Computational Fluid Dynamics (CFD), and prior validation was made with the actual operation data of a power station, as well as the adiabatic flame temperature of methane. The mass fraction of CO<sub>2</sub>, O<sub>2</sub> and NO<sub>x</sub> emissions for blended methane with different percentages of excess air explosions was also investigated. The stoichiometric excess air varies from 0% to 30% with air-fuel mixture of 2.7 kg/s. The geometric model of the combustor is extracted from actual gas turbine combustor using 3D scanner and converted into CAD model for simulation. The Navier-Stokes equations were solved using commercial CFD code, ANSYS Fluent, with RNG k-ε chosen to close the turbulence. For reacting species, the species transport model is assumed. Results showed that the addition of excess air during combustor has little effect on the velocity and temperature distribution, both at the combustor interior, as well as at the exit. For the emission of CO<sub>2</sub> and O<sub>2</sub>, though there was no clear trend on the relations between the emission of these species and the excess air, the impact was quite significant. The production of NO<sub>x</sub> was also found to be independent on the excess air ratio, but instead, was a strong function of combustion and exhaust gas temperature.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3