Deep Learning-Based Audio-Visual Speech Recognition for Bosnian Digits

Author:

,Fazli Husein,Almisre Ali Abd, ,Md Tahir Nooritawati,

Abstract

This study presents a deep learning-based solution for audio-visual speech recognition of Bosnian digits. The task posed a challenge due to the lack of an appropriate Bosnian language dataset, and this study outlines the approach to building a new dataset. The proposed solution includes two components: visual speech recognition, which involves lip reading, and audio speech recognition. For visual speech recognition, a combined CNN-RNN architecture was utilised, consisting of two CNN variants namely Google Net and ResNet-50. These architectures were compared based on their performance, with ResNet-50 achieving 72% accuracy and Google Net achieving 63% accuracy. The RNN component used LSTM. For audio speech recognition, FFT is applied to obtain spectrograms from the input speech signal, which are then classified using a CNN architecture. This component achieved an accuracy of 100%. The dataset was split into three parts namely for training, validation, and testing purposes such that 80%, 10% and 10% of data is allocated to each part, respectively. Furthermore, the predictions from the visual and audio models were combined that yielded 100% accuracy based on the developed dataset. The findings from this study demonstrate that deep learning-based methods show promising results for audio-visual speech recognition of Bosnian digits, despite the challenge of limited Bosnian language datasets.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3