Palm Oil Mills Odour Emission Survey based on Different POME Treatment System

Author:

Chung Andrew Yap Kian, ,Qamaruz Zaman Nastaein,Abd. Manaf Fatah Yah,Mohamed Halim Rohaya,Abd. Majid Rusnani, , , ,

Abstract

Odorous gaseous such as ammonia and hydrogen sulphide produced by anaerobic bacteria are emitted when palm oil mill effluent (POME) is treated via anaerobic digestion. The Department of Environment (DOE) under the jurisdiction of the Air Division has proposed an odour emission limit of 12,000OUm<sup>-3</sup> at source sample for Malaysian palm oil mills recently. The objective of this paper is to investigate the odour concentration at effluent treatment area within palm oil mills which practise different types of common POME treatment systems such as Open Ponds Treatment, Covered Lagoon and Digester Tank. The odour source grabbed samples from the respective treatment plants were assessed according to MS 1963:2007 Air Quality – determination of odour concentration by dynamic olfactometry. In addition in-situ odour concentration surrounding the respective project sites have been measured based on enhanced procedures adapted from VDI3940 Grid Method. The survey results showed that odour emitted from Open Ponds Treatment was having highest concentration while Digester Tank was having the lowest concentration due to quarantine factor. None of the observations comply the DOE proposal. Thus, alternative approaches need to be counter proposed in the legislation drafting so that the millers compliance could be ensured while avoid the public sensory annoyance complaints.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3