Simulation Study on Liquid Droplet Size Measurement inside Venturi Scrubber

Author:

Ali Othman Nur Tantiyani, ,Dhalywala Simreth Kaur,

Abstract

Droplet distribution is an importance factor to observe scrubber’s performance as uniform droplets distribution improved the particle’s collection efficiency at minimal liquid usage. Yet, the optimization problem typically involves complicated model functions to predict particle’s collection efficiency and pressure drop. Since the interaction between liquid droplets and gas phase is complex and difficult to solve by an experimental approach. Thus in this study, the prediction of liquid droplet’s behavior in the venturi scrubber was observed by using computational fluid dynamic. The liquid was injected through two orifices on the throat wall. The droplet size at different position was observed at various range of a gas velocity from 70 to 100 m/s and the ratio of liquid to gas of 0.07 to 2.0 L/m<sup>3</sup> to determine the optimum absorption rate. The droplet’s breakup in the venturi scrubber was observed using ANSYS<sup>©</sup> simulation where two-fluid model Eulerian-Eulerian approach was applied. It shows as the gas passes through the throat section, the velocity increases gradually and as it passes through the divergent section, it decreases causing the droplet diameter to increase. Typically, the gas velocity in the throat section is between 30-120 m/s, however in this simulation, the gas velocity of 70-105 m/s shown an adequate to achieve the optimum absorption rate. Besides, the liquid to gas ratio less than 0.06 was insufficient to cover the throat, and by increasing it up to 1.0 does not significantly improve the particle collection efficiency as the velocity at the scrubber’s throat drops which a larger droplets diameter was formed.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3