Efficiency Evaluation of Cavitation Heat Generator Used for Desalination of Saline Solutions

Author:

Ivanov Evgeniy, ,Gorbunov Boris,Pasin Aleksander,Arjutow Boris,Novozhilov Alexey, , , ,

Abstract

Nowadays, the issue of efficient desalination and treatment of seawater for its further use in various domains of human activity is of much interest worldwide. There are plenty of known treatment techniques. This research paper discusses the method of hydrodynamic cavitation treatment in a heat generator in various modes and proves the performance efficiency of this method. The process of treating saline solutions of different concentrations and registration of electric conductivity of solutions are studied. The possibility of changing the concentration of salt in the solution by treating it in a vortex cavitation heat generator is undertaken. The efficiency of the cavitation process depends on the temperature of the working environment: with the temperature increase, the desalination intensity decreases. Two possible scenarios of the process are revealed, i.e., the decrease in the concentration of salt in the solution or its increase in the presence of a salt source. When working on depleted solutions with a salinity of 1÷5 ‰ at high temperatures, the reverse diffusion of previously adsorbed salts from the internal surfaces into the solution takes place. When working on solutions of elevated concentrations in the same high-temperature range, the reverse diffusion decreases and at a salinity of 67 ‰, its effect ceases, since the concentration of salts on the inner surfaces becomes comparable to the concentration of the solution. The hypothesis of centrifugal separation of salts from water is experimentally proved.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3