Design and Analysis of Energy and Exergy Performance of an LPG-Powered Fish Drying Machine

Author:

Benjamin.O Ezurike, ,Stephen A Ajah,Onyewuchi Ezurike,Uchenna Nwokenkwo, , ,

Abstract

A detailed design and analysis of the energy and exergy performance of a Liquefied Petroleum Gas (LPG)-powered fish drying machine are presented in this paper. The system designed is a modification to the conventional fish dryer which uses charcoal, electric or solar energy as sources of heat. The major problems of the conventional machines are; dangers of global warming from the burning of charcoals. The emission of smoke during operation causes environmental pollution which could have adverse effects on our respiratory systems. Moreover, it is difficult to attain uniform heat distribution using charcoal as a source of heat; erratic power supply in developing countries using electricity and inadequate sunshine using solar energy are all major problems of the conventional dryer. The gas-powered fish dryer is a fish processing device, which uses natural gas as the source of heat energy to reduce the moisture content of the fish. In this work, thermal analysis was carried out on the system after the design. The conduction and convection energy equations were applied to the system main component as well as the fish sample within the system. Numerical computational software (Scilab 6.0.0) was used in solving and analyzing the discretized form of the derived transient differential equations. Appropriate initial and boundary conditions were as well applied during the implementation of fully explicit forward and central difference numerical solutions for solving the differential equations. After solving and arriving at the temporal temperature profile of the dryer and the fish samples, other dependable parameters (energy consumed, exergy consumed, expended gas energy and exergy, energy and exergy efficiencies, etc.) were computed and plotted against time. After the result evaluation and testing, the designed machine proved successful and was found to have peak drying energy and exergy efficiencies of 90 % and 10% respectively.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3