Performance Analysis of Low Power Radio Frequency Micro Energy Harvester using MEMS Antenna for Wireless Sensor Networks

Author:

Sampe Jahariah, ,Mohd Yunus Noor Hidayah,Yunas Jumril,G. Ismail Ahmad, , ,

Abstract

Recently, there has been a growing tendency of interest from researchers to use ambient energy to power electronic equipment using various energy harvesting techniques. Micro energy harvesting is a potential technique to convert ambient energy from the environment to electrical energy. The wireless sensor network requires a constant source of electrical energy to activate it and the radio frequency (RF) ambient energy source that always exists in the environment is very suitable for use. Therefore, the designed and developed RF micro energy harvester consisting of an impedance matching circuit, a voltage multiplier and a rectifier circuit does not require an external energy source to activate it. This RF micro energy harvester circuit is constructed and simulated using PSPICE software by connecting a 1 MΩ load resistor. At an input power of -20 dBm or 10 μW captured by the MEMS antenna, the values of the output voltage and current produced in this energy harvester circuit are 2.36 V and 1.7 mA, respectively. Meanwhile, the maximum efficiency percentage of the entire RF micro energy harvester circuit is 55.7%. The output power value of 40.12 mW is higher than the input power value of 10 μW. This RF micro energy harvester is capable of activating a wireless sensor network with a minimum input current requirement of 1 mA. An integrated circuit layout using 180 nm CMOS technology for a multiplier circuit has been successfully developed with a very small size of 22.48 x 56.96 μm2 as proof that the circuit can be fabricated as an integrated circuit chip.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empirical Indoor Signal Propagation of LoRa Link for IoT Applications;2023 International Conference on Engineering Technology and Technopreneurship (ICE2T);2023-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3