Static Stress Analysis of Membrane Electrode Assembly (MEA) and Gasket in Proton Exchange Membrane Fuel Cell Stack Assembly Pressure

Author:

Nurato Nurato., ,Majlan Edy Herianto,Wan Daud Wan Ramli,Husaini Teuku,Rosli Masli Irwan,Sulong Abu Bakar,Shahbudin Mastar Mohd,Sebayang Darwin, , , , , , ,

Abstract

The proton exchange membrane fuel cell (PEMFC) system was an electrochemical device that generates electricity through the reaction of hydrogen and oxygen without combustion. Proton Exchange Membrane (PEM) stacks typically consisted of components combined into one unit and equipped with suitable clamping torque. This was to prevent reactant gas leakage and minimize the contact resistance between the gas diffusion medium and the bipolar plate. The combined components consisted of a bipolar plate with a flow field, current collector, membrane electrode assembly (MEA), endplate, and gasket. PEMFC performance was measured concerning its power output, which depends on temperature and the operating pressure. Various efforts had been made to determine the optimal compaction pressure and its distribution through simulations and experiments. Therefore, this research analyzed the static stress of membrane electrode assembly (MEA) and gasket in PEMFC stack assembly pressure. The components’ geometric dimensions and mechanical properties, such as endplates, current collectors, bipolar plates, MEAs, and gaskets, were combined for electricity. Pressure-sensitive film (Fuji measure film prescale) was also used to visualize contact pressure distribution between the MEA and the bipolar plate. The result showed that the color variation of the pressure film indicates the exact distribution of pressure entering the stacking design and the contact image. In conclusion, the detailed contact pressure distribution was an important influence on heat transfer processes and local electrochemical reactions in cell stacks.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3