Pavement Surface Distress Detection Using Digital Image Processing Techniques

Author:

Alayat Abdulsalam Basher, ,Ali Omar Hend,

Abstract

Road safety and pavement condition are considered top priorities in our civilized societies, and it’s important that the pavement condition remains in an excellent state for a long time. However, eventually, the pavement will get exposed to different types of distresses as a result of traffic loads, rough environment conditions, soil conditions, and underline subgrade. Therefore, to achieve the required standards for the pavement surface roads in our country and provide the best performance: detection and measurements of distresses extension must be included in maintenance preparation. This paper proposes a technique for crack detection based on digital image processing using a programming language called Matrix Laboratory known as MATLAB. The main target is to estimate the pavement’s length, width, and area by capturing the image using a digital camera with the required precautions and image implementation. Secondly, developing an image pre-processing operation to eliminate environmental interference as much as possible and subsequently use the image thresholding method to separate the pixels within the image into two groups to find the thresholding value for image binarization. The method successfully detects and removes the presence of unwanted objects in an image, even in difficult situations where surfaces are less visible. Verification showed good results with an excellent processing time, which can be considered an indicator of pavement crack parameters.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3