Tensile and Flexural Properties of Kenaf Reinforced Polylactic Acid under Heat Effect

Author:

Meor Sha Meor Syazalee, ,Zulkifli Rozli,

Abstract

iocomposite is a combination of natural reinforcement and natural matrix material consisting of kenaf reinforced with polylactic acid (PLA), where its mechanical properties will be affected when exposed to heat. This research investigates the effect of exposure of biocomposites to different temperatures on the mechanical properties of biocomposites, consisting of tensile and flexural properties. Before producing the sample, kenaf in the form of one-way yarn is conditioned with 40% RH humidity, and then the sample is produced using hot compression molding techniques by combining kenaf with PLA. Tensile and bending tests carried out in a heating chamber with the heat were studied using a Universal Testing Machine (UTM). The choice of heat temperature depends on the glass transition temperature of polylactic acid, where the study temperature ranges from 25 <sup>o</sup>C to 65 <sup>o</sup>C. From the results of the study, it was found that the maximum bending strength and modulus (117 MPa, 5.8 GPa) and the maximum tensile strength and modulus (59 MPa, 3.2 GPa) were both obtained at low temperatures (25 <sup>o</sup>C). While the modulus value decreases significantly at 55 <sup>o</sup>C, the tensile and flexural properties both show a steady decrease with increasing temperature. Therefore, the presence of temperature has a significant effect on the tensile and flexural properties of kenaf-reinforced PLA biocomposites. When it is exposed to high temperatures, the mechanical quality deteriorates, and the risk of failure increases. Failure is caused by poor reinforcement and matrix bonding caused by the degradation of natural fiber properties of kenaf and the level of PLA plastic deformation.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3