The Phytoremediation using Water Hyacinth and Water Lettuce: Correlation between Sugar Content, Biomass Growth Rate, and Nutrients

Author:

Zainuddin Nur Azmira, ,Md Din Mohd Fadhil,Abdul Halim Khairunnisa,Abdul Salim Nur Atikah,Elias Siti Hanna,Mat Lazim Zainab, , , , ,

Abstract

Degradation of water quality due to the presence of pollutants in water is an emerging issue in many countries, including Malaysia. Phytoremediation is one of the environmentally friendly, cost-effective conventional technologies that are still used in modern times. However, the selection of plant species is the most important aspect for the application of phytoremediation in wastewater treatment. Nevertheless, there are species of floating aquatic macrophytes that are capable of coping with various pollutants present in wastewater. Among the various floating aquatic macrophyte species, water hyacinth (WH) and water lettuce (WL) have been described as effective phytoremediators in reducing water pollution through bioaccumulation in their body tissues. Hence, WH and WL were chosen in this study as it is easily found, propagated, and cultivated. This paper aims to determine the biosorption capacity of these species in eliminating various pollutants present in wastewater as well as to define the optimum harvesting time for each species. Although these floating aquatic macrophytes are considered the most problematic plants due to their uncontrollable growth in water bodies worldwide, their ability to remove pollutants from wastewater has created a sustainable approach for their use in phytoremediation. In this sense, the use of phytoremediation by implementing the invasive floating aquatic macrophytes can certainly support the sustainable management of wastewater treatment in the future. Based on the results, it was found that WH efficiently removed higher PO43-, NO3- and NO2- concentrations compared to WL from the wastewater. Both WH and WL showed the same trend of correlation between the growth rate and sugar content, where the sugar content increased when the plants reached the highest growth rate. The maximum nutrient uptake occurred in 14-17 days, proving that nutrient availability is critical for plant growth. This study concludes that the sugar content of WH and WL are increased with the biomass growth rate, and both plants species are competent in eradicating the nutrient pollution in wastewater. On top of that, this study infers that the maximum harvesting period for WH biomass is on day 18, while WL biomass is on day 21; based on the highest sugar content and biomass weight of each species.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3