Prediction for Hydrolysis of Ethylene Oxide via Fuzzy Logic and PID Control

Author:

Abdul Halim Norhanifah, ,Abd. Rahman Norliza,Mohd Ali Jarinah, ,

Abstract

Monoethylene glycol (MEG) or Ethylene Oxide is an important chemical in plastic and automotive industry as mixed ingredients or cooling liquid. It is produced from ethylene oxide via hydrolysis at 200ºC and 22 atm. The ratio of the ethylene oxide with water should be maintain at 1:20 to reduce the formation of diethylene glycol and higher homologs. Objective of this study is to predict a production of MEG using fuzzy logic. Others parameters such as level, temperature, composition and pressure are consider constant in this research as this study focusing on single input, single (SISO) output strategy. For fuzzy logic prediction, the type of model chosen is Mamdani with triangular membership function, input 1, input 2, and output which refer to error, feedback, and production of ethylene glycol respectively. 11 rules has been construct in this research. The rules may contain “AND” or “OR” conjunctions. The “error” represents the difference between the value feedback and the output. The results for fuzzy rules give highest product of MEG (6.91) at error of 0.102 and 0.8 of feedback. The gain of proportional, integral, and derivative are 0.2, 0.2, and 0.1 respectively.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3