12-APR Segmentation and Global Hu-F Descriptor for Human Spine MRI Image Retrieval

Author:

W Zaki W Mimi Diyana, ,Chei Siong Ling,Hussain Aini,W Ahmad W Siti Halimatul Munirah,Abdul Hamid Hamzaini, , , ,

Abstract

The image retrieval system has been used to provide the needed correct images to the physicians while the diagnosis and treatment process is being conducted. The earlier image retrieval system was a text-based image retrieval system (TBIRS) that used keywords for the image context and it requires human’s help to manually make text annotation on the images. The text annotation process is a laborious task especially when dealing with a huge database and is prone to human errors. To overcome the aforementioned issues, the approach of a content-based image retrieval system (CBIRS) with automatic indexing using visual features such as colour, shape and texture becomes popular. Thus, this study proposes a semi-automated shape segmentation method using a 12-anatomical point representation method of the human spine vertebrae for CBIRS. The 12 points, which are annotated manually on the region of interest (ROI), is followed by automatic ROI extraction. The segmentation method performs excellently, as evidenced by the highest accuracy of 0.9987, specificity of 0.9989, and sensitivity of 0.9913. The features of the segmented ROI are extracted with a novel global Hu-F descriptor that combines a global shape descriptor, a Hu moment invariant, and a Fourier descriptor based on the ANOVA selection approach. The retrieval phase is implemented using 100 MRI data of the human spine for thoracic, lumbar, and sacral bones. The highest obtained precision is 0.9110 using a normalized Manhattan metric for lumbar bones. In a conclusion, a retrieval system to retrieve lumbar bones of the MRI human spine has been successfully developed to help radiologists in diagnosing human spine diseases.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3