Powder and Electrical Properties of La0.6Sr0.4CoO3-δ Cathode Material Prepared by a Modified Sol-Gel Method for Solid Oxide Fuel Cell Application

Author:

Samat Abdullah Abdul, ,Wan Yusoff Wan Nor Anasuhah,Norman Nur Wardah,Somalu Mahendra Rao,Osman Nafisah, , , ,

Abstract

The powder properties and electrical conductivity of lanthanum strontium cobalt oxide, La0.6Sr0.4CoO3-δ (LSC) material were systematically characterized with respect to application as cathode material for intermediate temperature solid oxide fuel cell (SOFC). The LSC was prepared via a modified sol-gel method assisted with a combination of ethylene glycol and activated carbon as a chemical additive. The decomposition of impurity compounds such carbon compounds and nitrates in the precursor powder was completed at 870 °C as revealed by thermogravimetry (TG) analysis. As the calcination temperature increased from 800 °C to 1000 °C, the purity and crystallite size of the the calcined precursor powder also increased as confirmed by X-ray diffrcation (XDR) analysis. The micrograph of scanning electron microscope (SEM) image showed that the particle of the calcined powders form agglomeration and this led to low relative density (80.18 %) of the sintered LSC pellet at 1200 °C. The direct current electrical conductivities (σdc) of the sintered LSC pellet measured using Van der Pauw technique in air were 1504 S cm-1 and 1069 S cm-1 at 400 °C and 800 °C, respectively. The relatively high σdc with low activation energy (Ea) of 0.021 eV indicates that the LSC prepared in this work has a great potential to be used as a cathode material for intermediate temperature SOFC application.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3