An Investigation into the Behavior of Disposable Face Masks in Modified Bitumen for Sustainable Transportation Pathways

Author:

Mansor Syahirah, ,Mohd Zamri Nur Amirah,Abd Rahman Zanariah,Ramli Rozaini,Kamil Arshad Ahmad, , , ,

Abstract

Since December 2019, COVID-19 infection rates have risen considerably, and the virus is currently widespread around the world. Following the COVID-19 outbreak, the production of medical waste has skyrocketed. Disposable face masks are considered medical waste. Alternative measures must be implemented to assist in reducing medical waste disposal, which can result in serious public health problems and have a negative influence on the environment. In this regard, this research was conducted to investigate the effect of disposable face mask (DFM) ash with varied rates ranging from 5% to 20% by weight on bitumen with a 5% increment to be utilised as an alternative material in asphalt pavement. A series of physical and rheological tests were conducted on the bitumen samples to study the behavior of the DFM ash in bituminous material. Overall, the physical and rheological test results revealed that introducing 20% DFM ash to the modified bitumen was unable to achieve the same properties as with the conventional SMA14 asphalt binder. However, the modified bitumen penetration grade PEN 60/70 has improved the properties and quality of the asphalt in the flexible pavement. In addition, utilising the DFM waste in road construction would be a sustainable technique for protecting the environment by minimising face mask waste caused by the COVID-19 epidemic while lowering the pavement’s construction cost. These research findings may be commercialised to generate revenue in the construction industry for sustainable transportation pathways.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3