The Design of a New 3D Print-in-place Soft Four-Legged Robots with Artificial Intelligence

Author:

Saan Cern Yong, ,Sheng Ze Yeoh,

Abstract

Soft and flexible robots are designed to change their flexibility over a wide range to perform tasks adequately in real-world applications. Current soft robots require cast moulding, high assembly effort and large actuators. Soft origami structures exhibit high levels of compliance. In this paper, we designed a new 3D print-in-place soft four-legged robot (3DSOLR). Our soft legged robot is an endurance application adapted from the soft origami zigzag gripper. This novel and innovative design are inspired by the rigid joint Theo Jansen legged robot with highly adaptive 3D print-in-place soft origami legs capable of fluid motion and even surviving drop tests. The robot mechanism consists of four soft origami flexible legs driven by two DC motors. The 3DSOLR is lightweight and semi-autonomous using two Hall effect sensors and a wireless Bluetooth module. Being 3D print-in-place using Thermoplastic polyurethane also increases its durability while having flexibility, simplicity and safety. The robot also has a gripper inspired by the mandible of male European stag beetle (Lucanus cervus). These features make this robot suitable to be used in social robotics and rescue robotics applications. The transmitter program is implemented in Bluetooth serial communication using MIT App Inventor 2 smartphone apps and a microcontroller Arduino ATMEL is used as the main controller and code in Arduino IDE. It has artificial intelligence (AI) capability with ESP32 CAM onboard which has an object classification accuracy of 95.5% using custom Edge Impulse neural network MobileNetV1 96 x 96. This AI capability enhanced the robot’s capability in object classification for grasping.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3