The Performance of Isolated Half-Scissor Like Elements Mechanism Under Compression Axial Load

Author:

Teck Jung Chai, ,Cher Siang Tan,Heng Boon Koh, ,

Abstract

Half-Scissor Like Elements (H-SLEs) deployable mechanism is the prefab scissor based structural mechanism consists of two bars with bolted connection to enable structure change shape. An experimental investigation on the isolated H-SLEs deployable mechanism under compression axial load was presented. A total of twelve specimens were fabricated in two series with six specimens each series were tested on their strength and stability at deployed configuration. The test specimens in series 1 mm thick C75 section were namely S1, S2, S3, S4, S5 and S6 while series 0.75 mm thick C 75 section were namely S7, S8, S9, S10, S11 and S12. The test specimens consist of C 75 and C 100 section which connected with M6, M8 and M10 bolt in grade 8.8. The compression axial load was applied at the center of 3 mm thick loading platform. The experimental results obtained indicated that four types of failure modes observed, i.e. bolt bending failure, section bearing failure, member buckling failure and instability due to horizontal displacement at mid-height of H-SLEs deployable mechanism (Bolted joint area). Among these failure modes, bolt bending failure was dominated the overall structure stability and impacts others failure modes indirectly while section thickness has impacted the buckling and bearing failure. The ultimate load capacity over BS EN 1993 design bearing resistance ratio obtained for M10 bolt was satisfactory. Besides, twisted effect observed during load applied also contributed to the failure modes identified. Thus, the H-SLEs deployable mechanism with stiffener with M10 bolt connection is necessary for future research in the application of spatial deployable structure purposes.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3